Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Ecological differences among species, particularly dispersal capacity and life history strategies, influence population response to environmental changes. Genetic simulations now allow us to directly incorporate this variation into models of past demographic changes. However, the impact of life history strategies in demographic inference has been far less explored relative to that of dispersal capacity. Here, we utilise individual‐based simulations of a non‐Wright‐Fisher population to ask whether differences in life history traits (the average age of first reproduction of individuals, the average adult mortality and the average number of mates per reproductive season) lead to consistent and predictable differences in the summary statistics of genetic diversity commonly used for simulation‐based parameter estimation and demographic inference. Using a Random Forest model, we also estimate three population parameters (variance in reproductive success, generation time and effective population size) from genome‐wide SNP variation for two bird species known to have distinct life history strategies. The results demonstrate that life history variation leads to predictable differences in patterns of genetic diversity: higher values of life history traits, representing extreme polygamy, long adult longevity and later onset of reproduction, are associated with higher variance in reproductive success, longer generation times, smaller effective population sizes and overall lower genetic diversity. Parameter estimates from empirical datasets also agree with the general expectation that polygamic species with later onset of reproduction and long adult longevity exhibit higher variance in reproductive success, longer generation times and smaller effective population sizes. Since the signal of life history differences is observed in the genetic summary statistics, we argue that simulation‐ and model‐based multi‐species demographic inference will gain from the incorporation of life history information.more » « less
-
ABSTRACT In integrative distributional, demographic and coalescent (iDDC) modelling, a critical component is the statistical relationship between habitat suitability and local population sizes. This study explores this relationship in twoEnyaliuslizard species from the Brazilian Atlantic Forest: the high‐elevationE. iheringiiand low‐elevationE. catenatusand how this transformation affects spatiotemporal demographic inference. Most previous iDDC studies assumed a linear relationship, but this study hypothesises that the relationship may be nonlinear, especially for high‐elevation species with broader environmental tolerances. We test two key hypotheses: (1) The habitat suitability to population size relationship is nonlinear forE. iheringii(high‐elevation) and linear forE. catenatus(low‐elevation); and (2)E. iheringiiexhibits higher effective migration across populations thanE. catenatus. Our findings provide clear support for hypothesis (2), but mixed support for hypothesis (1), with strong model support for a nonlinear transformation in the high‐elevationE. iheringiiand some (albeit weak) support for a nonlinear transformation also inE. catenatus. The iDDC models allow us to generate landscape‐wide maps of predicted genetic diversity for both species, revealing that genetic diversity predictions for the high‐elevationE. iheringiialign with estimated patterns of historical range stability, whereas predictions for low‐elevationE. catenatusare distinct from range‐wide stability predictions. This research highlights the importance of accurately modelling the habitat suitability to population size relationship in iDDC studies, contributing to our understanding of species' demographic responses to environmental changes.more » « less
-
ABSTRACT The Importance of the Regional Species PoolThe regional species pool—the set of species capable of entering a local community—is a foundational concept for understanding ecological processes that occur between local and extensive (biogeographic) spatial scales. However, the lack of precise definitions for the regional species pool, coupled with limited research into the dynamics of regional biodiversity, has impeded the development of a comprehensive framework to explain the mechanisms shaping these pools. Processes Governing Regional Species PoolsAlthough ecological processes at local and extensive scales are relatively well understood, the mechanisms shaping regional biota remain less clear. Regional species pools are likely shaped by a unique set of processes that often overlap minimally with those operating at local or extensive scales. Despite their significance, our understanding of the specific mechanisms driving the dynamics of regional species pools remains incomplete. The Need for a Theory of Regional Species PoolsWe argue that it is essential to prioritise the study of the regional species pool for two reasons. First, the regional species pool bridges spatial and temporal scales from ecological dynamics in landscapes to the long‐term processes shaping the biotas of entire biogeographic provinces. As such, understanding the dynamics of species pools addresses fundamental questions about the origin, maintenance, and dynamics of biodiversity. Second, effective biodiversity conservation in the Anthropocene hinges on understanding the processes that operate at regional scales.more » « less
-
Abstract Hybrid zones are important windows into the evolutionary dynamics of populations, revealing how processes like introgression and adaptation structure population genomic variation. Importantly, they are useful for understanding speciation and how species respond to their environments. Here, we investigate two closely related sea star species,Asterias rubensandA. forbesi, distributed along rocky European and North American coastlines of the North Atlantic, and use genome‐wide molecular markers to infer the distribution of genomic variation within and between species in this group. Using genomic data and environmental niche modelling, we document hybridization occurring between northern New England and the southern Canadian Maritimes. We investigate the factors that maintain this hybrid zone, as well as the environmental variables that putatively drive selection within and between species. We find that the two species differ in their environmental niche breadth;Asterias forbesidisplays a relatively narrow environmental niche while conversely,A. rubenshas a wider niche breadth. Species distribution models accurately predict hybrids to occur within environmental niche overlap, thereby suggesting environmental selection plays an important role in the maintenance of the hybrid zone. Our results imply that the distribution of genomic variation in North Atlantic sea stars is influenced by the environment, which will be crucial to consider as the climate changes.more » « less
-
Abstract The study of biodiversity started as a single unified field that spanned both ecology and evolution and both macro and micro phenomena. But over the 20th century, major trends drove ecology and evolution apart and pushed an emphasis towards the micro perspective in both disciplines. Macroecology and macroevolution re‐emerged as self‐consciously distinct fields in the 1970s and 1980s, but they remain largely separated from each other. Here, we argue that despite the challenges, it is worth working to combine macroecology and macroevolution. We present 25 fundamental questions about biodiversity that are answerable only with a mixture of the views and tools of both macroecology and macroevolution.more » « less
An official website of the United States government
